# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 3-(4-Butylphenylamino)isobenzofuran-1(3*H*)-one<sup>1</sup>

#### Mustafa Odabaşoğlu<sup>a</sup>\* and Orhan Büyükgüngör<sup>b</sup>

<sup>a</sup>Department of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and <sup>b</sup>Department of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey Correspondence e-mail: muodabas@omu.edu.tr

Received 3 October 2007; accepted 25 October 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.080; wR factor = 0.249; data-to-parameter ratio = 15.4.

The crystal structure of the title compound,  $C_{18}H_{19}NO_2$ , is stabilized by intermolecular  $N-H\cdots O$  and  $C-H\cdots O$ hydrogen bonds and also  $C-H\cdots \pi$  interactions. These hydrogen-bond interactions generate edge-fused  $R_2^2(8)R_2^2(10)-R_2^2(8)R_4^2(20)R_2^2(8)R_2^2(10)R_2^2(8)$  ring motifs. The phthalide group is planar and oriented at a dihedral angle of 57.92 (16)° with respect to the benzene ring.

#### **Related literature**

For related structures, see: Büyükgüngör & Odabaşoğlu (2006*a*,*b*, 2007); Odabaşoğlu & Büyükgüngör (2006*a*,*b*,*c*,*d*,*e*,*f*,*g*,*h*,*i*,*j*,*k*,*l*,*m*,*n*,*o*,*p*,*q*,*r*, 2007*a*,*cb*,*c*,*d*,*e*,*f*). For related literature, see: Aoki *et al.* (1973, 1974); Lacova (1973); Elderfield (1951); Tsi & Tan (1997). For general background, see: Etter (1990). For bond-length data, see: Allen *et al.* (1987).



#### **Experimental**

Crystal data

| CualtaNOa                  | c = 18875(2) Å                   |
|----------------------------|----------------------------------|
| $M_{\rm r} = 281.34$       | $\alpha = 89.268 (10)^{\circ}$   |
| Triclinic. $P\overline{1}$ | $\beta = 82.734 (10)^{\circ}$    |
| a = 5.8603 (7)  Å          | $\gamma = 76.045 \ (10)^{\circ}$ |
| b = 7.2525 (9) Å           | V = 772.18 (16) Å <sup>3</sup>   |
|                            |                                  |

<sup>1</sup> 3-Substituted phthalides, Part XXIX. For Part XXVIII, see: Odabaşoğlu & Büyükgüngör (2007g).

Z = 2Mo  $K\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ 

#### Data collection

Stoe IPDS-2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002)  $T_{min} = 0.960, T_{max} = 0.992$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.080$   $wR(F^2) = 0.249$  S = 1.053002 reflections 195 parameters

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 ring.

| $D - H \cdots A$                                                                                                                    | D-H                                              | $H \cdot \cdot \cdot A$                          | $D \cdots A$                                                  | $D - \mathbf{H} \cdot \cdot \cdot A$                |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| $N1 - H19 \cdots O1^{i}$ $C3 - H3 \cdots O1^{ii}$ $C10 - H10 \cdots O2^{i}$ $C6 - H6 \cdots Cg1^{iii}$ $C17 - H17B \cdots Cg1^{iv}$ | 0.99 (4)<br>0.93<br>0.93<br>0.93<br>0.93<br>0.97 | 2.04 (4)<br>2.44<br>2.70<br>2.94 (3)<br>2.78 (3) | 3.000 (4)<br>3.331 (5)<br>3.450 (5)<br>3.635 (4)<br>3.663 (6) | 165 (3)<br>161 (3)<br>139 (1)<br>133 (1)<br>151 (1) |

T = 296 K

 $R_{\rm int} = 0.105$ 

refinement

 $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.22~{\rm e}~{\rm \AA}^{-3}$ 

 $0.71 \times 0.33 \times 0.07 \text{ mm}$ 

16234 measured reflections

3002 independent reflections

1669 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z; (iv) x, y + 1, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2339).

#### References

- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1973). Jpn. Patent No. 7 324 724.

Aoki, K., Furusho, T., Kimura, T., Satake, K. & Funayama, S. (1974). Chem. Abstr. 80, 129246.

- Büyükgüngör, O. & Odabaşoğlu, M. (2006a). Acta Cryst. E62, o2003-o2004.
- Büyükgüngör, O. & Odabaşoğlu, M. (2006b). Acta Cryst. E62, o2936-o2937.
- Büyükgüngör, O. & Odabaşoğlu, M. (2007). Acta Cryst. E63, o25-o27.
- Elderfield, R. C. (1951). *Heterocylic Compounds*, Vol. 2, ch. 2. New York: Wiley.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lacova, M. (1973). Chem. Zvesti, 27, 525-535.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o1879-o1881.

Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o1882-o1883.

Odabaşoğlu, M. & Büyükgüngör, O. (2006c). Acta Cryst. E62, o1884-o1885.

- Odabaşoğlu, M. & Büyükgüngör, O. (2006*d*). Acta Cryst. E62, o2088–o2089. Odabaşoğlu, M. & Büyükgüngör, O. (2006*e*). Acta Cryst. E62, o2316–o2317. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o2866–o2868. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o2943–o2944. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o4138–o4139. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o2558–o2559. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o3042–o3043. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o2079–o2080. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o2929–o2931. Odabaşoğlu, M. & Büyükgüngör, O. (2006*f*). Acta Cryst. E62, o4366–o4367. Odabaşoğlu, M. & Büyükgüngör, O. (2006*m*). Acta Cryst. E62, o4140–o4141. Odabaşoğlu, M. & Büyükgüngör, O. (2006*n*). Acta Cryst. E62, o4140–o4144.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006p). Acta Cryst. E62, 04145-04147.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006q). Acta Cryst. E62, o4148-o4150.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006r). Acta Cryst. E62, 04151-04153.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o22-o24.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o1999-o2001.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007c). Acta Cryst. E63, o2159-o2161.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007d). Acta Cryst. E63 04296-04297.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007e). Acta Cryst. E63 04343.
- Odabaşoğlu, M. & Büyükgüngör, O. (2007f). Acta Cryst. E63 04348.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Tsi, D. & Tan, B. K. H. (1997). Phytother. Res. 11, 576-582.

supplementary materials

Acta Cryst. (2007). E63, o4510-o4511 [doi:10.1107/S1600536807053226]

## 3-(4-Butylphenylamino)isobenzofuran-1(3H)-one

## M. Odabasoglu and O. Büyükgüngör

#### Comment

Phthalides (isobenzofuranones) possess several important properties, such as fungicidal (Aoki *et al.*, 1973; Lacova, 1973), bactericidal and herbicidal (Lacova, 1973), analgesic (Elderfield, 1951), hypotensive and vasorelaxant activities (Tsi & Tan, 1997). Considering the potential interest of such phthalide-3-phosphonates in synthetic organic chemistry as agrochemical and pharmaceutical agents, we decided to investigate the solid-state structures of 3-substituted phthalides by *x*-ray diffraction methods. As part of a continuing study of the interplay between molecular conformation and supra- molecular aggregation in 3-substituted phthalides (Büyükgüngör & Odabaşoğlu, 2006*a*,b; Odabaşoğlu & Büyükgüngör, 2006*a*–r, 2007*a*–g), we report herein the structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The phthalide group (C1—C8/O2) is planar, the largest deviation from the mean plane being -0.026 (4) Å (for C6). The dihedral angle between the planar phthalide group and phenyl ring is 57.92 (16)°.

In (I), the crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds and also C—H··· $\pi$  interactions (Table 1), which generate edge-fused  $R_2^2(8)R_2^2(10)R_2^2(8)R_4^2(20)R_2^2(8)R_2^2(10)R_2^2(8)$  ring motifs (Fig. 2) (Etter, 1990). The hydrogen bonded motifs are linked to each other forming three-dimensional network (Fig. 3).

#### **Experimental**

The title compound, (I), was prepared according to the method described by Odabaşoğlu & Büyükgüngör (2006*a*), using phthalaldehydic acid and 4-iodoaniline as starting materials (yield; 83%, m.p. 409–411 K). Crystals of (I) suitable for *x*-ray analysis were obtained by slow evaporation of a DMF solution at room temperature.

#### Refinement

H19 (for NH) was located in difference syntheses and refined isotropically [N—H = 0.99 (4) Å,  $U_{iso}(H) = 0.066 (11) Å^2$ ]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



Fig. 2. A partial packing diagram of (I), showing the formation of  $R_4^4(20)$  motif. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity [symmetry codes: (i) x + 1, y, z; (ii) x + 1, -y, 1 - z; (iii) -x, y, z].



Fig. 3. A packing diagram of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

### 3-(4-Butylphenylamino)isobenzofuran-1(3H)-one

| Crystal data                                    |                                              |
|-------------------------------------------------|----------------------------------------------|
| C <sub>18</sub> H <sub>19</sub> NO <sub>2</sub> | Z = 2                                        |
| $M_r = 281.34$                                  | $F_{000} = 300$                              |
| Triclinic, P1                                   | $D_{\rm x} = 1.210 {\rm ~Mg~m}^{-3}$         |
| Hall symbol: -P 1                               | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 5.8603 (7)  Å                               | Cell parameters from 16234 reflections       |
| <i>b</i> = 7.2525 (9) Å                         | $\theta = 2.2 - 27.3^{\circ}$                |
| c = 18.875 (2) Å                                | $\mu = 0.08 \text{ mm}^{-1}$                 |
| $\alpha = 89.268 \ (10)^{\circ}$                | T = 296  K                                   |
| $\beta = 82.734 \ (10)^{\circ}$                 | Plane, colorless                             |
| $\gamma = 76.045 \ (10)^{\circ}$                | $0.71\times0.33\times0.07~mm$                |
| $V = 772.18 (16) \text{ Å}^3$                   |                                              |

#### Data collection

| Stoe IPDS-2<br>diffractometer                                     | 3002 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Monochromator: plane graphite                                     | 1669 reflections with $I > 2\sigma(I)$ |
| Detector resolution: 6.67 pixels mm <sup>-1</sup>                 | $R_{\rm int} = 0.105$                  |
| T = 296  K                                                        | $\theta_{\rm max} = 26.0^{\circ}$      |
| ω scans                                                           | $\theta_{\min} = 2.2^{\circ}$          |
| Absorption correction: integration<br>(X-RED32; Stoe & Cie, 2002) | $h = -7 \rightarrow 7$                 |
| $T_{\min} = 0.960, \ T_{\max} = 0.992$                            | $k = -8 \rightarrow 8$                 |
| 16234 measured reflections                                        | <i>l</i> = −23→23                      |
|                                                                   |                                        |

### Refinement

| Refinement on $F^2$        | Hydrogen site location: inferred from neighbouring sites |
|----------------------------|----------------------------------------------------------|
| Least-squares matrix: full | H atoms treated by a mixture of                          |

independent and constrained refinement

| $R[F^2 > 2\sigma(F^2)] = 0.080$                                | $w = 1/[\sigma^2(F_o^2) + (0.0977P)^2 + 0.5206P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                               |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $wR(F^2) = 0.249$                                              | $(\Delta/\sigma)_{max} < 0.001$                                                                                                                   |
| <i>S</i> = 1.05                                                | $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$                                                                                               |
| 3002 reflections                                               | $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$                                                                                            |
| 195 parameters                                                 | Extinction correction: SHELXL97 (Sheldrick, 1997),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.051 (11)                                                                                                                |

Secondary atom site location: difference Fourier map

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x           | У           | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|--------------|---------------------------|
| 01  | 0.9390 (5)  | 0.2237 (4)  | 0.41838 (16) | 0.0799 (9)                |
| O2  | 0.7034 (5)  | 0.2755 (4)  | 0.33295 (15) | 0.0698 (8)                |
| N1  | 0.3062 (6)  | 0.3156 (4)  | 0.30706 (19) | 0.0642 (9)                |
| H19 | 0.193 (7)   | 0.303 (5)   | 0.349 (2)    | 0.066 (11)*               |
| C1  | 0.7958 (7)  | 0.1738 (5)  | 0.3882 (2)   | 0.0630 (10)               |
| C2  | 0.6939 (7)  | 0.0084 (5)  | 0.3981 (2)   | 0.0603 (10)               |
| C3  | 0.7386 (7)  | -0.1397 (6) | 0.4462 (2)   | 0.0673 (11)               |
| Н3  | 0.8495      | -0.1452     | 0.4778       | 0.081*                    |
| C4  | 0.6142 (8)  | -0.2759 (6) | 0.4454 (2)   | 0.0734 (12)               |
| H4  | 0.6401      | -0.3757     | 0.4772       | 0.088*                    |
| C5  | 0.4506 (9)  | -0.2681 (6) | 0.3983 (3)   | 0.0791 (13)               |
| H5  | 0.3711      | -0.3646     | 0.3983       | 0.095*                    |
| C6  | 0.4009 (8)  | -0.1202 (5) | 0.3506 (2)   | 0.0702 (11)               |
| H6  | 0.2865      | -0.1136     | 0.3201       | 0.084*                    |
| C7  | 0.5296 (7)  | 0.0162 (5)  | 0.3507 (2)   | 0.0594 (10)               |
| C8  | 0.5281 (7)  | 0.1874 (5)  | 0.3051 (2)   | 0.0621 (10)               |
| H8  | 0.5860      | 0.1452      | 0.2556       | 0.074*                    |
| C9  | 0.2634 (7)  | 0.4695 (5)  | 0.2608 (2)   | 0.0601 (10)               |
| C10 | 0.0367 (7)  | 0.5832 (5)  | 0.2629 (2)   | 0.0643 (10)               |
| H10 | -0.0839     | 0.5599      | 0.2962       | 0.077*                    |
| C11 | -0.0127 (8) | 0.7312 (5)  | 0.2161 (2)   | 0.0717 (11)               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H11  | -0.1673     | 0.8049      | 0.2184     | 0.086*      |
|------|-------------|-------------|------------|-------------|
| C12  | 0.1583 (8)  | 0.7737 (6)  | 0.1661 (2) | 0.0704 (11) |
| C13  | 0.3872 (8)  | 0.6597 (6)  | 0.1651 (2) | 0.0781 (12) |
| H13  | 0.5071      | 0.6830      | 0.1316     | 0.094*      |
| C14  | 0.4421 (7)  | 0.5127 (6)  | 0.2125 (2) | 0.0717 (11) |
| H14  | 0.5980      | 0.4432      | 0.2120     | 0.086*      |
| C15  | 0.1054 (10) | 0.9338 (6)  | 0.1145 (3) | 0.0890 (15) |
| H15A | 0.2080      | 0.8983      | 0.0698     | 0.107*      |
| H15B | -0.0571     | 0.9523      | 0.1047     | 0.107*      |
| C16  | 0.1391 (12) | 1.1171 (7)  | 0.1414 (3) | 0.1084 (18) |
| H16A | 0.3021      | 1.0979      | 0.1508     | 0.130*      |
| H16B | 0.0382      | 1.1507      | 0.1865     | 0.130*      |
| C17  | 0.0844 (13) | 1.2847 (8)  | 0.0908 (3) | 0.116 (2)   |
| H17A | -0.0642     | 1.2868      | 0.0728     | 0.139*      |
| H17B | 0.0636      | 1.4020      | 0.1176     | 0.139*      |
| C18  | 0.2664 (14) | 1.2782 (10) | 0.0306 (4) | 0.143 (3)   |
| H18A | 0.2871      | 1.1634      | 0.0033     | 0.171*      |
| H18B | 0.4130      | 1.2812      | 0.0477     | 0.171*      |
| H18C | 0.2198      | 1.3859      | 0.0010     | 0.171*      |
|      |             |             |            |             |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|--------------|--------------|-------------|
| 01  | 0.0755 (19) | 0.091 (2)   | 0.085 (2)   | -0.0365 (17) | -0.0207 (16) | 0.0157 (16) |
| O2  | 0.0691 (17) | 0.0628 (16) | 0.0837 (19) | -0.0239 (13) | -0.0195 (14) | 0.0228 (14) |
| N1  | 0.061 (2)   | 0.0579 (19) | 0.071 (2)   | -0.0118 (16) | -0.0050 (16) | 0.0156 (16) |
| C1  | 0.062 (2)   | 0.058 (2)   | 0.068 (2)   | -0.0150 (19) | -0.005 (2)   | 0.0097 (19) |
| C2  | 0.062 (2)   | 0.054 (2)   | 0.062 (2)   | -0.0117 (17) | -0.0036 (18) | 0.0065 (17) |
| C3  | 0.074 (3)   | 0.059 (2)   | 0.066 (2)   | -0.010 (2)   | -0.011 (2)   | 0.0105 (19) |
| C4  | 0.093 (3)   | 0.051 (2)   | 0.073 (3)   | -0.015 (2)   | -0.004 (2)   | 0.013 (2)   |
| C5  | 0.100 (3)   | 0.051 (2)   | 0.087 (3)   | -0.025 (2)   | -0.004 (3)   | 0.003 (2)   |
| C6  | 0.079 (3)   | 0.050 (2)   | 0.082 (3)   | -0.016 (2)   | -0.010 (2)   | -0.006 (2)  |
| C7  | 0.063 (2)   | 0.047 (2)   | 0.064 (2)   | -0.0093 (17) | -0.0004 (18) | 0.0009 (17) |
| C8  | 0.067 (2)   | 0.055 (2)   | 0.065 (2)   | -0.0164 (19) | -0.0071 (19) | 0.0053 (18) |
| C9  | 0.069 (2)   | 0.052 (2)   | 0.063 (2)   | -0.0192 (18) | -0.0152 (19) | 0.0112 (18) |
| C10 | 0.063 (2)   | 0.057 (2)   | 0.071 (3)   | -0.0130 (19) | -0.0016 (19) | 0.0022 (19) |
| C11 | 0.073 (3)   | 0.051 (2)   | 0.086 (3)   | -0.0042 (19) | -0.014 (2)   | 0.005 (2)   |
| C12 | 0.082 (3)   | 0.059 (2)   | 0.072 (3)   | -0.019 (2)   | -0.017 (2)   | 0.014 (2)   |
| C13 | 0.082 (3)   | 0.080 (3)   | 0.074 (3)   | -0.024 (2)   | -0.005 (2)   | 0.023 (2)   |
| C14 | 0.065 (2)   | 0.072 (3)   | 0.076 (3)   | -0.016 (2)   | -0.004 (2)   | 0.017 (2)   |
| C15 | 0.115 (4)   | 0.068 (3)   | 0.089 (3)   | -0.024 (3)   | -0.030 (3)   | 0.019 (2)   |
| C16 | 0.156 (5)   | 0.081 (3)   | 0.098 (4)   | -0.038 (3)   | -0.033 (4)   | 0.023 (3)   |
| C17 | 0.148 (5)   | 0.079 (3)   | 0.116 (5)   | -0.025 (4)   | -0.013 (4)   | 0.024 (3)   |
| C18 | 0.178 (7)   | 0.123 (5)   | 0.107 (5)   | -0.017 (5)   | 0.015 (5)    | 0.022 (4)   |

Geometric parameters (Å, °)

| N1—H19 | 0.99 (4)  | C10—C11 | 1.381 (5) |
|--------|-----------|---------|-----------|
| C1—01  | 1.197 (5) | C10—H10 | 0.9300    |

| C1—O2     | 1.362 (5) | C11—C12       | 1.375 (6) |
|-----------|-----------|---------------|-----------|
| C1—C2     | 1.464 (5) | C11—H11       | 0.9300    |
| C2—C7     | 1.386 (5) | C12—C13       | 1.394 (6) |
| C2—C3     | 1.395 (5) | C12—C15       | 1.506 (6) |
| C3—C4     | 1.363 (6) | C13—C14       | 1.387 (6) |
| С3—Н3     | 0.9300    | С13—Н13       | 0.9300    |
| C4—C5     | 1.380 (6) | C14—H14       | 0.9300    |
| C4—H4     | 0.9300    | C15—C16       | 1.495 (7) |
| C5—C6     | 1.391 (6) | C15—H15A      | 0.9700    |
| С5—Н5     | 0.9300    | C15—H15B      | 0.9700    |
| C6—C7     | 1.382 (5) | C16—C17       | 1.534 (7) |
| С6—Н6     | 0.9300    | C16—H16A      | 0.9700    |
| С7—С8     | 1.501 (5) | C16—H16B      | 0.9700    |
| C8—N1     | 1.400 (5) | C17—C18       | 1.449 (9) |
| C8—O2     | 1.484 (4) | C17—H17A      | 0.9700    |
| С8—Н8     | 0.9800    | С17—Н17В      | 0.9700    |
| C9—C10    | 1.381 (5) | C18—H18A      | 0.9600    |
| C9—C14    | 1.391 (5) | C18—H18B      | 0.9600    |
| C9—N1     | 1.402 (5) | C18—H18C      | 0.9600    |
| C1—O2—C8  | 110.5 (3) | C12—C11—C10   | 122.4 (4) |
| C8—N1—C9  | 122.6 (3) | C12—C11—H11   | 118.8     |
| C8—N1—H19 | 114 (2)   | C10-C11-H11   | 118.8     |
| C9—N1—H19 | 122 (2)   | C11—C12—C13   | 116.5 (4) |
| O1—C1—O2  | 120.5 (4) | C11—C12—C15   | 122.7 (4) |
| O1—C1—C2  | 131.3 (4) | C13—C12—C15   | 120.8 (4) |
| O2—C1—C2  | 108.2 (3) | C14—C13—C12   | 122.1 (4) |
| C7—C2—C3  | 121.2 (4) | C14—C13—H13   | 118.9     |
| C7—C2—C1  | 109.2 (3) | C12-C13-H13   | 118.9     |
| C3—C2—C1  | 129.6 (4) | C13—C14—C9    | 119.9 (4) |
| C4—C3—C2  | 117.8 (4) | C13—C14—H14   | 120.1     |
| С4—С3—Н3  | 121.1     | C9—C14—H14    | 120.1     |
| С2—С3—Н3  | 121.1     | C16-C15-C12   | 113.3 (4) |
| C3—C4—C5  | 121.0 (4) | C16—C15—H15A  | 108.9     |
| C3—C4—H4  | 119.5     | C12—C15—H15A  | 108.9     |
| C5—C4—H4  | 119.5     | C16-C15-H15B  | 108.9     |
| C4—C5—C6  | 122.1 (4) | C12—C15—H15B  | 108.9     |
| С4—С5—Н5  | 119.0     | H15A—C15—H15B | 107.7     |
| С6—С5—Н5  | 119.0     | C15-C16-C17   | 115.0 (5) |
| C7—C6—C5  | 116.8 (4) | C15—C16—H16A  | 108.5     |
| С7—С6—Н6  | 121.6     | C17—C16—H16A  | 108.5     |
| С5—С6—Н6  | 121.6     | C15—C16—H16B  | 108.5     |
| C6—C7—C2  | 121.1 (3) | C17—C16—H16B  | 108.5     |
| C6—C7—C8  | 130.7 (4) | H16A—C16—H16B | 107.5     |
| C2—C7—C8  | 108.3 (3) | C18—C17—C16   | 114.0 (6) |
| N1—C8—O2  | 111.7 (3) | C18—C17—H17A  | 108.8     |
| N1—C8—C7  | 114.6 (3) | C16—C17—H17A  | 108.8     |
| O2—C8—C7  | 103.7 (3) | C18—C17—H17B  | 108.8     |
| N1—C8—H8  | 108.9     | C16—C17—H17B  | 108.8     |
| O2—C8—H8  | 108.9     | H17A—C17—H17B | 107.7     |

# supplementary materials

| С7—С8—Н8    | 108.9      | C17—C18—H18A    | 109.5      |
|-------------|------------|-----------------|------------|
| C10—C9—C14  | 118.3 (3)  | C17—C18—H18B    | 109.5      |
| C10-C9-N1   | 119.3 (3)  | H18A—C18—H18B   | 109.5      |
| C14—C9—N1   | 122.3 (4)  | C17—C18—H18C    | 109.5      |
| C11—C10—C9  | 120.6 (4)  | H18A—C18—H18C   | 109.5      |
| C11—C10—H10 | 119.7      | H18B—C18—H18C   | 109.5      |
| С9—С10—Н10  | 119.7      |                 |            |
| O1—C1—O2—C8 | -179.2 (4) | N1-C8-O2-C1     | 123.2 (3)  |
| C2—C1—O2—C8 | 2.3 (4)    | C7—C8—O2—C1     | -0.7 (4)   |
| O1—C1—C2—C7 | 178.6 (4)  | O2—C8—N1—C9     | 71.4 (4)   |
| O2—C1—C2—C7 | -3.1 (4)   | C7—C8—N1—C9     | -171.0 (3) |
| O1—C1—C2—C3 | -0.4 (8)   | C10-C9-N1-C8    | 176.1 (4)  |
| O2—C1—C2—C3 | 177.9 (4)  | C14—C9—N1—C8    | -4.0 (6)   |
| C7—C2—C3—C4 | -0.4 (6)   | C14-C9-C10-C11  | 2.7 (6)    |
| C1—C2—C3—C4 | 178.6 (4)  | N1—C9—C10—C11   | -177.4 (4) |
| C2—C3—C4—C5 | 0.4 (6)    | C10-C9-C14-C13  | -3.9 (6)   |
| C3—C4—C5—C6 | -1.4 (7)   | N1-C9-C14-C13   | 176.2 (4)  |
| C4—C5—C6—C7 | 2.3 (6)    | C9-C10-C11-C12  | -0.5 (6)   |
| C5—C6—C7—C2 | -2.2 (6)   | C10-C11-C12-C13 | -0.4 (7)   |
| C5—C6—C7—C8 | 177.3 (4)  | C10-C11-C12-C15 | 179.5 (4)  |
| C3—C2—C7—C6 | 1.4 (6)    | C11—C12—C13—C14 | -0.9 (7)   |
| C1—C2—C7—C6 | -177.8 (4) | C15—C12—C13—C14 | 179.2 (4)  |
| C3—C2—C7—C8 | -178.3 (4) | C12—C13—C14—C9  | 3.1 (7)    |
| C1—C2—C7—C8 | 2.6 (4)    | C11-C12-C15-C16 | 91.9 (6)   |
| C6—C7—C8—N1 | 57.2 (6)   | C13-C12-C15-C16 | -88.3 (6)  |
| C2—C7—C8—N1 | -123.2 (4) | C12-C15-C16-C17 | -179.3 (5) |
| C6—C7—C8—O2 | 179.2 (4)  | C15—C16—C17—C18 | -75.8 (8)  |
| C2—C7—C8—O2 | -1.2 (4)   |                 |            |

# Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------|-------------|--------------|--------------|---------|
| N1—H19…O1 <sup>i</sup>       | 0.99 (4)    | 2.04 (4)     | 3.000 (4)    | 165 (3) |
| C3—H3···O1 <sup>ii</sup>     | 0.93        | 2.44         | 3.331 (5)    | 161 (3) |
| C10—H10····O2 <sup>i</sup>   | 0.93        | 2.70         | 3.450 (5)    | 139 (1) |
| C6—H6…Cg1 <sup>iii</sup>     | 0.93        | 2.94 (3)     | 3.635 (4)    | 133 (1) |
| C17—H17B···Cg1 <sup>iv</sup> | 0.97        | 2.78 (3)     | 3.663 (6)    | 151 (1) |
|                              | 1 () 1 (    | 1            |              |         |

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*, -*z*+1; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*.











Fig. 3